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I. lNTRODtJCTION 

For accurate evaluation of the high-frequency characteristics 
of state-of-the-art SiGe HBTs, extraction of the S-parameters 
at very high frequencies is required. The current industry 
paradigm is to use “open” or “open-short” standards [l][Zl. 
Because this approach assumes lumped-component approxima- 
tions, however, it begins to lose accuracy as the frequency in- 
creases above about 30 GHz. For more robust S-parameter ex- 
traction, several high-frequency de-embedding techniques have 
been presented [3]-[71. These methods either use equivalent 
two-polt analysis (with cascade, series, or parallel structures), 
use equivalent circuit modeling, or EM simulations. The first 
de-embedding type simplifies the parasitics by neglecting their 
insignificant components (e.g., the cascade structure neglects 
the parasitic feedback from the output to the input). The other 
types require a specific model or else simulation together with 
additional calibration. 

As shown in [Sll9], any 2-port measn~ement can be modeled 
as 4-port system which captures all of the parasitics surrounding 
the intrinsic device (Fig. 1). Once the 4 x 4 matrix of the system 
is solved, the intrinsic S-parameters can be accurately extracted. 
In the present work, we present a set of test strwtwes that effi- 
ciently determine the Y-parameters of the 4-port pamsitics net- 
work without equivalent circuit assumptions or EM simulations. 
Thus, this de-embedding methodology considers all parasitics, 
making it suitable for very high-frequency measurements and 
package parasitic decoupling. 

i-.~ __________ _ __..______-. _ __________________ _ .----. 
DUT 

Parasitics 
+ 1, 

1, + +I4 

-4-Ez! 
VI v, INT “4 

Parasitics 

II. THEORY 

As shown in Fig. 1, the parasitics are modeled as a 4-pot? 
system. The I-V relationships of the extrinsic and intrinsic pot% 
can be written as a 4 x 4 Y-matrix according tn 

Let V, and I. be the extrinsic voltage and current vectors, and 
V, and I, are the intrinsic voltage and current vectors 171 

(:)=( i$“d( I)=( ;) 
Thus, we have [81 

(:)=[;I ;I(;) (9 
where [Y,,], [Y,,], [r;,l and [r;,l are four 2 x 2 matrices. Hence, 
the extrinsic Y-parameters and the intrinsic device Y-parameters 
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then be related.by It can be proven that the standard method (eqn. 5) is valid if 

YDUTV< = Y,,v, + Ye,K and only if the asslimption of Ye, = Y,, = XL = YsHoRT - 

-Y““q = r;,v, +Y,,v, 
YopEN is valid. At high frequency (e.g., f > 30 GHz), how- 

where YrNT is the intrinsic device Y-parameters, and Your is 
ever, this assumption is no longer valid because the distributed 
nature of the parasitics must be considered. One direct way to 

the Z-port Y-parameters of the DUT. solve this problem is to add more test stmctwz for more bound- 
Note that the current directions of the intrinsic device are op- 

posite to the current directions of the pamsitics. One thus ob- 
ary conditions in order to extract Y,,, Ye,, 6, and Y,,. As shown 
below, 5 test strUct”rcs can be used to extract the requisite Y 

tains mattices. 
YDUT = Ye, - Y<,(Y““T + Ypr,, (3) 111. TEST STRUCTURES AND DE-EMBEDDING PROCEDURE 

or 

Y’NT = -K:,(YDUT - YeJIY,, - Y,, (4) 
Once the 16 variables of the 4 x 4 matrix is known, one can 

F,g. 3 shows the layout of the DUT and the needed test strut- 

build the appropriate l-to-l relationship between the extrinsic 
and intrinsic Y-parameters. The next step is to design test strut- 
tures for determining the 4.port parameters. Since for each test 
stmctw one can measure a 2 x 2 Y-parameter matrix, one get 
four equations in each IIC measurement. To solve for all 16 vari- 
ables, one needs to measure at least 4 different test stmctw?s, 
unless approximations are made. 

tures. By measuring the S-parameters of the 5 test strwtwes and 
then using the simple mathematical transformations described 
below, one can calculate the 16 matrix variables and thus accu- 
rately de-embed the intrinsic S-parameters. The de-embedding 
procedure is as follows. 

The industry-standard open-short de-embedding method only 
uses two test structwcs: an open and a short, together.with an 
equivalent circuit model. Fig. 2 shows the equivalent circuit 
model of this traditional open-short de-embedding method. One 
can see that the distributed parasitics are simplified to one par- 
allel capacitor (G) at the extrinsic end and tvfo series inductors 
(Z) between the extrinsic and the intrinsic end. The intrinsic 
device Y-parameters can thus be calculated by 
yINT = [(yDUT _ ym‘"-' _ (ymJRT _ yom-l]-l (.j) 

where [yDor], [YINr], [YoPEN] and [YSHoRT] are the Y- 
parameters of the DUT, the intrinsic device, the open structure, 
and the short structwe, respectively. 

D”T 

Fig. 3. The layout of tie DU-T and the test StruCt”~es. 

1) Measure the S-parameters [.Sou7], [SOPEN], [SS”ORT], 
RIGHT]. convert the S-parameters 

x # 1 and y # I, one can prove that 

Fig. 2. Equivalent circuit model of the traditional open-shon de-emtddmg 
methad. 

yR’GHT - ),yOPEN - (1 - )gyS”ORT = ye, b 0 [ 1 o o r,, 

where a, b are constants, and similarly 
This open-short approach can be generally expressed as a 

simplified version of the present 4.port de-embedding tech- 
YTHR” -ySHORT = yei c c [ 1 c c r,, 

nique. In the 4.port system, V, = 0 for the short structure and where c is constant. 
I, = 0 for the open structwe. Applying these two boundary 3) Let 
conditions to eqn. 2, one obtains YLO = yLEFT _ XyOPSN _ (l _ x)ySHORT 

yJ-“ORT = y,, YRO = yR’GHT _ yyOPEN _ (I_ y)ySHORT 
yOPEN = r,, - MWL YTS = yrHn” _ ySHORT 
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Obtain unscaled [YL,], [x’,] and [r;:] by using the equations be- 
In”, .- 

r;, = 
[ 

1 YfiOIYpP 
ml mtYfp;“lYf I 

Y,‘, = 
[ 

1 m2 
RO 

Y2RplYtt mlY;,OO/Yf,o 1 
YYIY TT 

ml = ‘0 I.0 
- Yfy/Y,“p 

y12 IYtt 
TS 

- YYlY,, 

Y2:sIY TT - Y,“plYf 
m2 = LO LO 

yzt IYll 
7s 

- Y,:“lY, I 
4) Calculate the scale factor k using the equations given below 

k = l/(R,~f/~‘) 
yL'NT = -fJ(YL"FT _ ywmjy;, _ yl; 

where RI is the polysilicon resistor value of the “LEW test 
structwe shown in Fig. 3. Thus, the intrinsic Y-parameters are 
given finally by 

IV. MEASUREMENT AND VERIFICATION 

To compare the various de-embedding methods, the S- 
parameters of state-of-the-art 0 12 x 2.5 pm2 SiGe HBTs were 
measured (Fig. 4). 
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The peak fr of these SiGe HBTs is 180 GHz at a BVcao = 
2.2 V. The measurements were performed using a conventional 
microwave probing system and an HP 851OC Vector Network 
Analyzer over a frequency range of 4 GHz to 36 GHz. 

Fig. 5 shows the measured and open-short de-embedded S- 
parameters. Note that for a better comparison, we have plotted 
&1/4 and &2 - 1 instead of &I and S22. Observe that a large 
deviation is seen between the raw d,ata and the de-embedded 
data. This is because the parasitics are comparable to the in- 
trinsic device Y-parameters in these small devices. A more so- 
phisticated de-embedding method is clearly required for accu- 
rate characterization of such high-speed devices. 

To fully verify the accuracy of the proposed new 4.port de- 
embedding method at high frequencies, and to make a fair com- 
parison with other de-embedding methods, one must resofl to 
device simulations, because the (implicitly accurate) simulated 
intrinsic device S-parameters are needed to quantify accuracy 
of the various de-embedding methods. We have thus used HP- 
ADS with carefully calibrated device models to simulate the S- 
parameters of the SiGe HBTs both with and without distributed 
parasitics. The simulated frequency range is 1 &Hz to 100 GHz. 
Fig. 6 shows the equivalent circuit of the DUT used in the HP- 
ADS simulation. A 4-port distnbuted parasitic system is used. 
The parasitics are chosen based on the measured test stroctore. 
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For brevity, we show only the Y*, parameter for the follow- 
ing comparison. Fig. 7 shows the intrinsic and de-embedded Y2, 
as a function of frequency. As predicted theoretically, the open- 
short can be used to accurately extract the intrinsic Y-parameters 
at low frequency (i.e. f < 20 GHz). As the frequency increases, 
however, deviation between the open-short method and the (im- 
plicitly accurate) model results is clearly observed. By using 
the present 4.port de-embedding method, however, one obtains 
very high precision in the extracted Y-parameters, and impor- 
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Fig. 7. The real and imagmary pans of the Y*t parameter as a function of 
frequency. 

tantly, the accuracy is frequency independent. 
In fact, this new method has been theoretically proven to hold 

for any 4.port (active/passive) parasitic system. To show this, 
we arbitrarily choose the 4-port Y-parameters as a parasitic sys- 
tem in Fig. 6, and then we extracted the Y-parameters using this 
present 4.port method. Fig. 8 shows the simulated intrinsic and 
4-port de-embedded S-parameters. Excellent agreement is ob- 
served across the entire frequency range. In general, the present 
method is valid for any 4.port parasitic system, and thus would 
be suitable for package de-embedding, where wire-bonds, for 
instance, must be considered. 

kg. 8. Sim”tated intrinsic and 4.pm de-embedded S-parameters. The frs 
quency range is from 1 GHz to 100 GHz. 

v. SUMMARY 

We have proposed a new 4.port S-parameter de-embedding 
methodology which is useful for high frequency device charac- 
terization. The method requires no equivalent circuit modeling 
or detailed EM simulations. Based on measurements of state- 
of-the-art SiGe HBTs, this method is shown to be more accurate 
than the standard open-short method commonly used in the in- 
dustry. Based on HP-ADS simulations using calibrated SiGe 

HBT models, one can correctly extract S-parameters at least 
to 100 GHz. This method should also be useful for extracting 
package parasitics in complex systems. 
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